FAULHABER1219N006G樣本電機馮哈伯報價

2.通過對人體運動捕捉獲得的運動步態數據進行處理,獲得了適用于所建外骨骼仿真模型的步態數據,進而結合此步態數據進行了外骨骼Adams多體動力學建模與仿真。通過對外骨骼背負不同負載時的外骨骼關節參數進行對比仿真分析,發現***轉矩及***功率(瞬間參數)不能有效體現出外骨骼的助力效果。通過仿真獲取了外骨骼的faulhaber電機驅動系統參數及液壓驅動系統參數。通過對外骨骼關節彈性元件、阻尼元件的添加方法進行分析,發現添加彈性元件能夠減小外骨骼關節需求的***轉矩絕對值;阻尼元件能夠改善關節運動特性,但會產生額外的能量消耗。通過對外骨骼的ZMP(零點轉矩)進行仿真分析研究,發現基于ZMP穩定性判據的控制策略不能有效跟蹤人體運動。
FAULHABER盤式扁平直流微電機扁平直流微電機 系列 1506...SR 的FAULHABER扁平直流微電機系列 1506...SR精密合金換向名義電壓: 3 ... 12 V電流上至: 0,45 mNm空載轉速: 12.800 min?1外徑: 15 mm長度: 5,5 mm扁平直流微電機 系列 1506...SR IE2-8 的FAULHABER扁平直流微電機系列 1506...SR IE2-8精密合金換向器,內置編碼器
名義電壓: 3 ... 12 V電流上至: 0,4 mNm空載轉速: 15.500 min?1每轉線數: 8編碼器通道: 2外徑: 15 mm長度: 7,8 mm扁平直流微電機 系列 2607...SR 的FAULHABER扁平直流微電機系列 2607...SR精密合金換向名義電壓: 6 ... 24 V
電流上至: 3,4 mNm空載轉速: 6.600 min?1外徑: 26 mm長度: 7 mm扁平直流微電機 系列 2607...SR IE2-16 的FAULHABER扁平直流微電機列 2607...SR IE2-16精密合金換向器,內置編碼器
名義電壓: 6 ... 24 V電流上至: 3 mNm空載轉速: 7.200 min?1
每轉線數: 16編碼器通道: 2外徑: 26 mm長度: 9,2 mm直流扁平無刷微電機 系列 1509...B 的FAULHABER直流扁平無刷微電機系列 1509...B四磁極名義電壓: 6 ... 12 V電流上至: 0,45 mNm堵轉轉矩: 0,95 mNm空載轉速: 15.000 min?1外徑: 15 mm長度: 8,8 mm直流扁平無刷微電機 系列 2610...B 的FAULHABER直流扁平無刷微電機系列 2610...B四磁極名義電壓: 6 ... 12 V電流上至: 2,87 mNm堵轉轉矩: 7,54 mNm空載轉速: 6.400 min?1外徑: 26 mm長度: 10,4 mm
直流扁平無刷減速電機 系列 1515...B 的FAULHABER直流扁平無刷減速電機系列 1515...B 名義電壓: 6 ... 12 V
連續轉矩: 30 mNm峰值轉矩: 50 mNm減速比: 6 ... 324外徑: 15 mm
長度: 15,2 mm直流扁平無刷減速電機 系列 2622...B 的FAULHABER
直流扁平無刷減速電機系列 2622...B 名義電壓: 6 ... 12 V連續轉矩: 100 mNm
峰值轉矩: 180 mNm減速比: 8 ... 1257外徑: 26 mm
長度: 22 mm帶集成式轉速控制器的電機 系列 2622...B SC 的FAULHABER
帶集成式轉速控制器的電機系列 2622...B SC內置調速驅動器
名義電壓: 6 ... 12 V空載轉速: 6.200 min?1外徑: 26 mm長度: 22 mm帶集成式轉速控制器的電機 系列 2610...B SC 的FAULHABER帶集成式轉速控制器的電機 2610...B SC內置調速驅動器名義電壓: 6 ... 12 V上至: 3,25 mNm空載轉速: 6.700 min?1長度: 10,4 mm

3.建立了人機協同行走Adams-Simulink聯合仿真模型、人體直接背負負載行走仿真模型及人體無負載獨立行走仿真模型。通過不同模型的對比仿真,分析了常見旋轉膝關節外骨骼的助力效果。仿真發現,穿戴外骨骼不能有效減小人體驅動轉矩范圍大小,但能使背負負載時人體額外需求的動量矩消耗及能量消耗降低。說明外骨骼的助力效果體現在動量矩及能量這些針對整個運動過程的衡量參數方面,而非***驅動轉矩及***功率這種瞬間參數。此外,對平動膝關節人體下肢外骨骼結構模型進行了助力效果仿真分析,證明了所設計平動膝關節結構在使外骨骼結構更加簡單緊湊的同時,能夠達到負重行走時減輕人體負擔的目的。4.提出了將人體看作外骨骼工作環境的基于faulhaber電機電流環的交互力放大控制方案。

兩棲仿生機器蟹的實驗研究是基于對海蟹分析和相關性能的研究,遵循“行為仿生,突出功能”的原則,設計了兩棲仿生機器蟹的模型樣機。樣機采用并行8足的結構,每個步行足采用三自由度伺服驅動方式。為兼顧仿生物蟹外形的特點,兩棲仿生機器蟹整體上采用扁平的流線型結構。提出了兩棲仿生機器蟹的總體方案,并對多環并聯結構機器人專用faulhaber電機運動學、微型伺服驅動技術、機械仿生技術、DSP實時控制等關鍵技術開展了研究。借助運動學、動力學和優化分析的手段,以靈活性和穩定性為目標,獲得了兩棲仿生機器蟹結構優化參數模型。設計了兩棲仿生機器蟹原理樣機。"面向目標獲取的空間機器人專用faulhaber電機模糊控制的研究及實現自由飛行空間機器人專用faulhaber電機由基座(航天器)和搭載于基座上的機械臂組成,可以輔助或者代替宇航員進行空間艙內和艙外任務,如衛星的釋放、捕捉與維修,大量的空間加工,空間生產,空間裝配,空間科學實驗和空間維修等需要獲取目標的工作,這就對空間機器人專用faulhaber電機的機械臂控制和基座的位姿調整提出了很高的要求。

研究內容是針對淺灘登陸偵察、排雷、科學探險等惡劣環境下需求提出的。通過對比分析得出海蟹是研究淺灘水陸兩棲、高靈活仿生機器蟹理想的生物原型。在對生物原型的分析的基礎上。給出了兩棲仿生機器蟹的機構形式和組成原則,包括兩棲仿生機器蟹本體結構,8條腿結構,單腿各關節之間的比例關系,并建立了數學模型。提出兩棲仿生機器蟹步行足關節采用了螺旋傘齒輪的傳動方式,將伺服faulhaber電機輸出的旋轉運動減速并改變輸出軸方向,合理的解決了faulhaber電機沿腿長度方向分布和關節轉軸空間角度的問題,并且體積小、效率高。同時對采用形狀記憶合金作為關節驅動器方法進行了研究,盡管SMA絲作為兩棲仿生機器蟹轉動關節驅動元件在工程實踐中存在一定難度。
FAULHABER1219N006G樣本電機馮哈伯報價


